Want Better Software? TEST it!
(and then write it)

Tame defects before they appear
You Rise/Bugs Fall



Introduction

 TDD had its origins as an integral part of
Extreme Programming

« TDD, BDD, DDD and the coming of age of
software development

* Part of a group of good practices unifying
under a common terminology



What Causes Defects

Human error
Requirements not well understood
nappropriate time assigned to the project

Complexity of software, infrastructure or
Interactions

Breaking changes in technology
Breaking changes in the project
Adverse environmental conditions
Insufficient knowledge




TDD Reduces Defects

* Testing is an integral part of design and
development

— Comprehensive tests result
— Unit tests serve as regression tests
* Improved Design helps manage complexity

— Testable code is inherently modular and loosely
coupled



Cost vs. Benefit

* Cost

— Initially takes longer

— Training/learning required
* Benefit

— Faster bug detection

— Shorter feedback loop (less effort/cost required to
find and fix)



Dealing with the Pitfalls

* False Sense of security

— Don’t assume code is correct just because it
passes all the tests

— QA and manual testing are still required
— Don’t forget about the requirements

* Blank Slate effect
— Deciding what to test not always obvious
— Break down the requirement
— Review the design



Elements

Testing Frameworks (NUnit, VS Test, MbUnit)
Isolation Frameworks (Rhino, JustMock, etc.)

Code Generation within the IDE and 3 Party
Tools

Techniques



Demo

* Developing a simple project using TDD



Testing Tools

* Visual Studio (C#)
* NUnit (test framework)
* Rhino Mocks (isolation framework)



Sample Application

* Asimple Accounting Application

* Scenarios
— Debit an Asset Account
— Credit an Asset Account
— Debit a Liability Account
— Credit a Liability Account



Sample Application

FinancialAccount

+MName : string
=AccountNo ; string
-Balance : decimal

+Dabit])
+Credit()

AN

AssetAccount Liability Account




TDD Technique

e The Three “A”s

— Arrange
— Act
— Assert

* Red/Green Refactoring
— Write a failing test

— Write the simplest method to pass the test
— Write another test ...



Unit Tests

Test a single unit of code

Isolates the SUT from all other components
including those it depends upon

Does not interact with the environment
Requires no setup

Repeatable (does not change the state of the
application)



Stubs and Mocks

e Stubs
— Passive
— Take the place of dependencies
— Isolate the unit under test

e Mocks

— Active
— Detect interactions

— Can tell if the unit under test is using the interface
correctly



Principle/Pattern

* The Principle of Inversion of Control
 The Dependency Injection Pattern



Integration Tests

Test two or more units of code that work
together

May interact with the environment
May change the state of the application
May require set-up/reset



Unit Tests vs. Integration Tests

Important to distinguish
Keep separate, preferably in separate libraries
Create Tests in a Solution Folder

Use Categories to separate tests into groups
that can be run separately



Good Tests Should Be

* Trustworthy
e Maintainable
e Readable



How to Start

Research

Get the tools

Practice on small systems/projects
Measure progress and make visible

Obtain support from management/influential
people

Don’t set yourself up for failure



Summary

TDD reduces defects, improves design and helps
make software more maintainable

Part of a broader group of concepts

Fairly mature, great tools and information
available

Techniques are simple, results proven
Integration tests and unit tests are separate
Good tests have three characteristics

Start small, build support



Part Ill — Optional Topics

* Test Coverage

* Visual Studio Power Tools — Pex, Moles
— Generating Test Code Automatically
— Parameterised Tests — The Fourth “A”
— Code Contracts

e Evolution: Behaviour Driven Development
(BDD)

— Ubiquitous language for software development
— How TDD supports BDD



References

Domain Driven Design: Tackling Complexity in the Heart
of Software [Eric Evans, Adison Wesley, pp23-27]

Extreme Programming Explained: Embrace Change
2Ed[Beck/Andres, Addison Wesley, p50]

The Art of Unit Testing [Roy Osherove, Manning, p172-
181]

http://dannorth.net/introducing-bdd/
http://www.blurtit.com/q834817.html

http://tech.eroups.yahoo.com/group/extremeprogramm
ing/message/111829

http://www.specflow.org/
http://behaviour-driven.org/




Where to get the tools

* Nunit http://nunit.org
* MbUnit http://mbunit.com/Default.aspx

* Rhino Mocks
http://ayende.com/projects/rhino-
mocks/downloads.aspx




