
Want Better Software? TEST it!

(and then write it)

Tame defects before they appear

You Rise/Bugs Fall

Introduction

• TDD had its origins as an integral part of

Extreme Programming

• TDD, BDD, DDD and the coming of age of

software development

• Part of a group of good practices unifying

under a common terminology

What Causes Defects

• Human error

• Requirements not well understood

• Inappropriate time assigned to the project

• Complexity of software, infrastructure or
interactions

• Breaking changes in technology

• Breaking changes in the project

• Adverse environmental conditions

• Insufficient knowledge

TDD Reduces Defects

• Testing is an integral part of design and

development

– Comprehensive tests result

– Unit tests serve as regression tests

• Improved Design helps manage complexity

– Testable code is inherently modular and loosely

coupled

Cost vs. Benefit

• Cost

– Initially takes longer

– Training/learning required

• Benefit

– Faster bug detection

– Shorter feedback loop (less effort/cost required to

find and fix)

Dealing with the Pitfalls

• False Sense of security

– Don’t assume code is correct just because it
passes all the tests

– QA and manual testing are still required

– Don’t forget about the requirements

• Blank Slate effect

– Deciding what to test not always obvious

– Break down the requirement

– Review the design

Elements

• Testing Frameworks (NUnit, VS Test, MbUnit)

• Isolation Frameworks (Rhino, JustMock, etc.)

• Code Generation within the IDE and 3rd Party

Tools

• Techniques

Demo

• Developing a simple project using TDD

Testing Tools

• Visual Studio (C#)

• NUnit (test framework)

• Rhino Mocks (isolation framework)

Sample Application

• A simple Accounting Application

• Scenarios

– Debit an Asset Account

– Credit an Asset Account

– Debit a Liability Account

– Credit a Liability Account

Sample Application

TDD Technique

• The Three “A”s

– Arrange

– Act

– Assert

• Red/Green Refactoring

– Write a failing test

– Write the simplest method to pass the test

– Write another test …

Unit Tests

• Test a single unit of code

• Isolates the SUT from all other components

including those it depends upon

• Does not interact with the environment

• Requires no setup

• Repeatable (does not change the state of the

application)

Stubs and Mocks

• Stubs

– Passive

– Take the place of dependencies

– Isolate the unit under test

• Mocks

– Active

– Detect interactions

– Can tell if the unit under test is using the interface
correctly

Principle/Pattern

• The Principle of Inversion of Control

• The Dependency Injection Pattern

Integration Tests

• Test two or more units of code that work

together

• May interact with the environment

• May change the state of the application

• May require set-up/reset

Unit Tests vs. Integration Tests

• Important to distinguish

• Keep separate, preferably in separate libraries

• Create Tests in a Solution Folder

• Use Categories to separate tests into groups

that can be run separately

Good Tests Should Be

• Trustworthy

• Maintainable

• Readable

How to Start

• Research

• Get the tools

• Practice on small systems/projects

• Measure progress and make visible

• Obtain support from management/influential

people

• Don’t set yourself up for failure

Summary

• TDD reduces defects, improves design and helps
make software more maintainable

• Part of a broader group of concepts

• Fairly mature, great tools and information
available

• Techniques are simple, results proven

• Integration tests and unit tests are separate

• Good tests have three characteristics

• Start small, build support

Part III – Optional Topics

• Test Coverage

• Visual Studio Power Tools – Pex, Moles

– Generating Test Code Automatically

– Parameterised Tests – The Fourth “A”

– Code Contracts

• Evolution: Behaviour Driven Development
(BDD)

– Ubiquitous language for software development

– How TDD supports BDD

References

• Domain Driven Design: Tackling Complexity in the Heart
of Software [Eric Evans, Adison Wesley, pp23-27]

• Extreme Programming Explained: Embrace Change
2Ed[Beck/Andres, Addison Wesley, p50]

• The Art of Unit Testing [Roy Osherove, Manning, p172-
181]

• http://dannorth.net/introducing-bdd/

• http://www.blurtit.com/q834817.html

• http://tech.groups.yahoo.com/group/extremeprogramm
ing/message/111829

• http://www.specflow.org/

• http://behaviour-driven.org/

Where to get the tools

• Nunit http://nunit.org

• MbUnit http://mbunit.com/Default.aspx

• Rhino Mocks

http://ayende.com/projects/rhino-

mocks/downloads.aspx

